

Wechselrichter/Laderegler Benutzerhandbuch

IC-24/3000/100/80 Art.Nr.: 1-01-013700 IC-48/5000/80/60 Art.Nr.: 1-01-013705

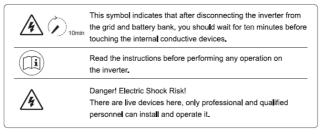
Inhalt

Sicherheitshinweeise	2
1 Allgemeines	6
1.1 Überblick	6
1.2 Erklärung des Gerätes	7
1.3 Anschlussplan	10
2 Einbauanleitung	12
2.1 Allgemeine Installationshinweise	12
2.2 Vor der Installation	13
2.3 Bestimmen der Installationsposition	15
2.4 Installieren Sie den Wechselrichter/das Ladegerät	16
2.5 Verdrahtung	
2.6 Betrieb des Wechselrichters/Ladegeräts	24
3 Schnittstelle	25
3.1 Indikator	25
3.2 Knopf	26
3.3 LCD	26
3.4 Betriebsart	28
3.5 Einstellungen	34
3.6 Batteriespannung Kundenspezifische Logik	45
3.7 Begrenzung des Batterieentladestroms	46
4 Schutzvorkehrungen	48
5 Fehlerbehebung	50
5.1 Referenz zu Fehlern	50
5.2 Lösungen	51
6 Instandhaltung	52
7 Leistungsbeschreibung	53
Anlage 1 PV-Leerlaufspannung V _S Eingangsleistung	56
Anhang 2 Haftungsausschluss	58

Sicherheitshinweeise

Bitte bewahren Sie dieses Handbuch für eine spätere Durchsicht auf.

Dieses Handbuch enthält alle Anweisungen zur Sicherheit, Installation und zum Betrieb des Wechselrichters/Ladeaeräts der Serie IC-24/48 (im Folgenden als Wechselrichter/Ladeaerät bezeichnet).


1. Erläuterung der Symbole

Bitte lesen Sie die entsprechende Literatur zu den folgenden Symbolen, damit Benutzer das Produkt effizient verwenden und die Sicherheit von Personen und Eigentum gewährleisten können.

Das gesamte System sollte von professionellem und technischem Personal installiert werden.

Symbol	Definition	
TIP	Gibt praktische Ratschläge als Referenz an.	
0	WICHTIG: Weist auf einen kritischen Hinweis während des Betriebs hin, dessen Nichtbeachtung zu einer Fehlfunktion des Geräts führen kann.	
<u>^</u>	VORSICHT: Weist auf potenzielle Gefahren hin, die, wenn sie nicht vermieden werden, zu Schäden am Gerät führen können.	
4	WARNUNG: Weist auf die Gefahr eines elektrischen Schlags hin, die, wenn sie nicht vermieden wird, zu Verletzungen führen kann.	
	WARNUNG HEIßE OBERFLÄCHE: Weist auf die Gefahr von hohen Temperaturen hin, die, wenn sie nicht beachtet werden, zu Verbrühungen führen können.	
Πi	Lesen Sie das Benutzerhandbuch sorgfältig durch, bevor Sie das Gerät in Betrieb nehmen.	

Symbole des Wechselrichters/Ladegeräts

2. Anforderungen an fach- und technisches Personal

- Professionell ausgebildet;
- Vertraut mit den zugehörigen Sicherheitsspezifikationen für das elektrische System;
- Lesen Sie dieses Handbuch sorgfältig durch und beachten Sie die entsprechenden

Sicherheitshinweise

3. Professionelles und technisches Personal darf folgendes tun

- Installieren des Wechselrichter/Ladegerät an einem bestimmten Ort.
- Durchführung von Probebetrieben für den Wechselrichter/das Ladegerät;
- Betrieb und Wartung des Wechselrichters/Ladegeräts.

4. Sicherheitshinweise vor der Installation

- Prüfen Sie bei Erhalt des Wechselrichters/Ladegeräts, ob Transportschäden aufgetreten sind. Wenden Sie sich rechtzeitig an das Transportunternehmen oder an unsere Firma, wenn ein Problem auftritt.
- Wenn Sie den Wechselrichter/Ladegerät lagern oder transportieren, befolgen Sie die Anweisungen im Handbuch.
- Bei der Installation des Wechselrichters/Ladegeräts müssen Sie prüfen, ob im Betriebsbereich eine Lichtbogengefahr besteht.
- Lagern Sie den Wechselrichter/Ladegerät nicht dort, wo Kinder ihn berühren können.
- Der Wechselrichter/Ladegerät ist ein netzunabhängiger Typ. Daher ist es strengstens untersagt, den AC-Ausgang an das Netz anzuschließen; andernfalls würde der Wechselrichter/Ladegerät beschädigt werden.
- Der Wechselrichter/Ladegerät ist nur für den Inselbetrieb zugelassen. Eine Parallel- oder Reihenschaltung der Ausgänge mehrerer Geräte würde den Wechselrichter/Ladegerät beschädigen.

5. Sicherheitshinweise für die mechanische Installation

- Vergewissern Sie sich vor der Installation, dass der Wechselrichter/Ladegerät keinen elektrischen Anschluss hat.
- Stellen Sie sicher, dass die Installation des Wechselrichters/Ladegeräts ausreichend Platz für die Wärmeabfuhr bietet. Installieren Sie den Wechselrichter/Ladegerät nicht in feuchten, fettigen, entflammbaren, explosiven, staubhaltigen oder anderen schwierigen Umgebungen.

6. Sicherheitshinweise für den elektrischen Anschluss

- Pr
 üfen Sie, ob alle Kabelanschl
 üsse fest sitzen, um die Gefahr eines W
 ärmestaus aufgrund einer losen Verbindung zu vermeiden.
- Die Schutzerdung muss mit der Erde verbunden sein. Der Querschnitt des Drahtes sollte nicht weniger als 4mm2 betragen.
- Zwischen der Batterie und dem Wechselrichter/Ladegerät sollte ein Leistungsschalter verwendet werden. Der Wert des Leistungsschalters sollte doppelt so hoch sein wie der Nenneingangsstrom des Wechselrichters/Ladegeräts.
- Bringen Sie den Wechselrichter/Ladegerät NICHT in die N\u00e4he der gefluteten Blei-S\u00e4ure-Batterie, da der Funkenflug der Klemmen den von der Batterie freigesetzten Wasserstoff entz\u00fcnden kann.
- Der AC-Ausgangsanschluss darf nur mit dem Verbraucher verbunden werden. Es ist daher strengstens

untersagt, andere Stromquellen oder Versorgungseinrichtungen anzuschließen. Andernfalls wird der Wechselrichter/das Ladegerät beschädigt. Schalten Sie den Wechselrichter/Ladegerät vor jeder Installation aus

 Sowohl der Netzeingang als auch der AC-Ausgang stehen unter Hochspannung, berühren Sie nicht die Kabelanschlüsse, um einen Stromschlaa zu vermeiden.

7. Sicherheitshinweise für den Betrieb des Wechselrichters/Ladegeräts:

- Wenn der Wechselrichter/Ladegerät in Betrieb ist, erzeugt sein Kühlkörper und sein Gehäuse eine große
 Hitze; die Temperatur ist dann sehr hoch. Bitte berühren Sie es nicht.
- Wenn der Wechselrichter/Ladegerät in Betrieb ist, öffnen Sie bitte nicht das Gehäuse des Wechselrichters/Ladegerät, um ihn zu bedienen.
- Schalten Sie den Schalter des Wechselrichters/Ladegeräts aus, wenn Sie die Fehler beheben oder den Gleichstromeingang abtrennen, und führen Sie den Vorgang durch, nachdem der LCD-Bildschirm vollständig ausgeschaltet ist.

8. Gefährliche Vorgänge, die Lichtbogen, Feuer oder Explosion verursachen können:

- · Berühren des Drahtende, das nicht isoliert behandelt wurde und möglicherweise unter Strom steht.
- Berühren der Kupferleitung oder interne Geräte, die unter Strom stehen können.
- Der Netzkabelanschluss ist lose.
- Schrauben oder andere Ersatzteile fallen versehentlich in den Wechselrichter/Ladegerät.
- · Falsche Eingriffe durch ungeschultes, nicht professionelles oder technisches Personal.

Sobald sich ein Unfall ereignet, muss er von professionellem und technischem Personal behandelt werden. Unsachgemäßes Vorgehen würden zu schwereren Unfällen führen.

9. Sicherheitshinweise zum Abschalten des Wechselrichters/Ladegeräts

- Schalten Sie zuerst die Leistungsschalter auf der Netzeingangsseite und der AC-Ausgangsseite aus, dann schalten Sie den Gleichstromschalter aus.
- Nach einem zehnminütigen Stillstand des Wechselrichters/Ladegeräts können die internen leitenden Geräte berührt werden:
- Der Wechselrichter/Ladegerät kann nach der Beseitigung von Fehlern, die seine Sicherheit beeinträchtigen k\u00f6nnten, wieder in Betrieb genommen werden;
- Im Wechselrichter/Ladegerät befinden sich keine Wartungsteile. Wenn eine Wartung erforderlich ist, wenden Sie sich bitte an unseren Kundendienst.

Berühren oder öffnen Sie das Gehäuse NICHT, wenn der Wechselrichter innerhalb von zehn Minuten ausgeschaltet wurde.

10. Sicherheitshinweise für die Wartung des Wechselrichters/Ladegerät:

- Es wird empfohlen, den Wechselrichter/Ladegerät mit einem Prüfgerät zu testen, um sicherzustellen, dass keine Spannung oder Strom vorhanden ist;
- Bei der Durchführung von elektrischen Anschluss- und Wartungsarbeiten müssen temporäre Warnschilder aufgestellt oder Barrieren errichtet werden, um zu verhindern, dass unbeteiligtes Personal den elektrischen Anschluss- oder Wartungsbereich betritt;
- Unsachgemäße Wartungsarbeiten am Wechselrichter/Ladegerät können zu Verletzungen oder Geräteschäden führen;
- Tragen Sie ein antistatisches Handgelenkband, oder vermeiden Sie unnötigen Kontakt mit der Leiterplatte.

Das Sicherheitszeichen, das Warnschild und das Typenschild auf dem Wechselrichter/Ladegerät sollten sichtbar, nicht entfernt oder verdeckt sein.

1 Allgemeines

1.1 Überblick

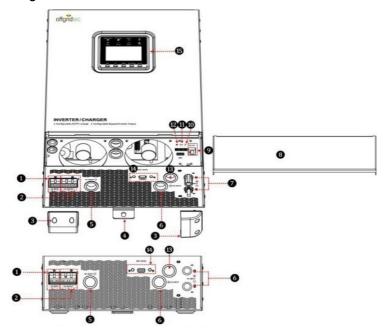
Die IC-24/48 Serie, ein Hybrid-Wechselrichter-Ladegerät, unterstützt die Aufladung durch das Stromnetz, die Aufladung durch den Ölgenerator, die Aufladung durch Solarzellen, die Ausgabe durch das Stromnetz, die Ausgabe durch den Wechselrichter und das Energiemanagement. Der DSP-Chip im Produkt mit einem fortschrittlichen Steueralgorithmus sorgt für eine hohe Reaktionsgeschwindigkeit und einen hohen Umwandlungswirkungsgrad. Darüber hinaus verfügt dieses Produkt über ein industrielles Design, um eine hohe Zuverlässigkeit zu gewährleisten, und bietet mehrere Lade- und Ausgangsmodi.

Die neue optimierte MPPT-Ladetechnologie verfolgt den maximalen Leistungspunkt der Solarmodule in jeder Situation schnell und erzeugt die maximale Energie in Echtzeit.

Der AC-DC-Ladeprozess nutzt den fortschrittlichen Regelalgorithmus, um eine vollständig digitale PFC und eine doppelte Regelung von Spannung und Strom zu realisieren. Dadurch sind die DC-Ladespannung und der DC-Ladestrom innerhalb eines bestimmten Bereichs kontinuierlich einstellbar.

Der DC-AC-Umwandlungsprozess, der auf einem vollständig intelligenten digitalen Design basiert, nutzt die fortschrittliche SPWM-Technologie, um einen reinen Sinuswellenausgang zu erhalten. Das Invertierungsverfahren wandelt Gleichstrom in Wechselstrom um und eignet sich für Haushaltsgeräte, Elektrowerkzeuge, Industrieanlagen, Audiosysteme und andere elektronische Geräte.

Das 4.2-Zoll-LCD zeigt den Betriebsstatus und alle Parameter an.


Um die Solarenergienutzung zu maximieren, kann der Benutzer die Energiequellen nach dem tatsächlichen Bedarf auswählen und das Versorgungsunternehmen flexibel als Ergänzung nutzen. Dieses Wechselrichter-Ladegerät kann die garantierte Stromversorgungsrate des Systems erhöhen, was für Solarenergie-, Versorgungs-/Ölgenerator-Hybridsysteme geeignet ist. Es zielt darauf ab, den Benutzern qualitativ hochwertige, hochstabile und hochzuverlässige elektrische Energie zu liefern.


Funktionen

- Vollintelligente digitale Energiespeicher
- Unterstützt den Batteriemodus oder den Nicht-Batteriemodus
- Nicht-Batterie-Modus: gleichzeitiges Laden mit Solar (Standard) und Netzversorgung (Assist)
- Überspannungs- und Verpolungsschutz zur perfekten Unterstützung des Lithium-Batteriesystems
- Fortschrittliche SPWM-Technologie und reiner Sinusgusagna
- PFC-Technologie erreicht einen hohen Leistungsfaktor von AC-DC-Laden und reduziert die Netzkapazitätsnutzung
- Volldigitale Doppel-Closed-Loop-Steuerung
- Hohe Tracking-Effizienz des MPPT von nicht weniger als 99,5%

- Drei Lademodis: Nur Solar, Solarpriorität, Utility & Solar
- Zwei AC-Ausgangsmodi: Versorgungspriorität und Wechselrichterpriorität
- Selbstlernende SOC-Anzeigefunktion
- Mehrere LED-Anzeigen zur dynamischen Anzeige des Status
- AC OUT-Taste zur direkten Steuerung des AC-Ausgangs
- 4,2-Zoll-LCD Display zur Überwachung und Änderung von Systemparametern
- Ferntemperaturkompensation f
 ür Batterien
- Optional: WiFi oder GPRS Fernsteuerung über den isolierten RS485-Anschluss
- Optionaler BMS-Link-Anschluss, der die Lade- und Entladesteuerung von BMS übernimmt
- Benutzerdefinierter Ladestrom und begrenzter Entladestrom
- Unterstützt Kaltstart und Softstart
- Umfassende elektronische Schutzfunktionen

1.2 Erklärung des Gerätes

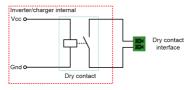
0	AC-IN / Netzeingang		RTS-Schnittstelle
2	AC-OUT/ Ausgangsklemme		potentialfreie-Schnittstelle (2)
3	Terminal-Abdeckungen		RBVS-Schnittstelle
4	Montagelöcher (4 insgesamt)	®	Kabelloch
6	Batterie-Minuseingangsklemme		RS485-Schnittstelle (DB9-Buchse, mit
6	Batterie-Pluseingangsklemme		Isolationsdesign) (3)5VDC / 200mA
0	PV-Eingangsklemme (MC4)		LCD
8	Externe Abdeckung		Netzschalter
9	BMS-Link Anschluss (RJ45, ohne Isolation) (1) 5VDC/200mA	0	Überstromschutz des AC-IN

(1) BMS-Link-Anschluss (RJ45)

+ Funktion:

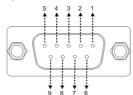
Über einen BMS-Link-Konverter können die BMS-Protokolle verschiedener Lithiumbatteriehersteller in das Standard-BMS-Protokoll unseres Unternehmens umgewandelt werden. Darüber hinaus realisiert es die Kommunikation zwischen dem Wechselrichter/Ladegerät und dem BMS.

+ RJ45 Pin-Definition:



Stecknadel	Definition	Stecknadel	Definition
1	+5VDC	5	RS485-A
2	+5VDC	6	RS485-A
3	RS485-B	7	GND
4	RS485-B	8	GND

Die derzeit unterstützten BMS-Hersteller und die BMS-Parameter entnehmen Sie bitte der Tabelle "BMS Lithium Battery Protocols & Fixed ID Table" oder wenden Sie sich an unsere technischen Support.

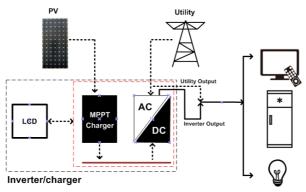

(2) Potentialfreie Schnittstelle

+ Funktionsprinzip:

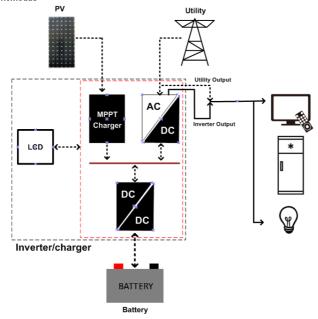
Wenn die Batteriespannung die EIN-Spannung des potentialfreien Kontakts (DON) erreicht, wird der potentialfreie Kontakt eingeschaltet. Seine Spule wird erregt. Der potentialfreie Kontakt kann ohmsche Lasten von maximal 125VAC /1A, 30VDC/1A betreiben. Je nach Batterietyp des Wechselrichter-Ladegeräts sind die Standardwerte für die Spannung des potenzialfreien Kontakts EIN (DON) und die Spannung des potenzialfreien Kontakts AUS (DOF) unterschiedlich. Einzelheiten hierzu finden Sie in Kapitel 3.5 Einstellungen > Punkt 19 DON und Punkt 20 DOF.

(3) RS485-Schnittstelle (DB9-Buchse)

DB9-Pin-Definition für die RTU-Typ IC-24/48-Serie:


Stecknadel	Definition	Stecknadel	Definition
1-2	NC	6	NC
3	+12VDC	7	RS485-A
4	GND2 (+ 12VDC Erdung)	8	RS485-B
5	GND1 (+ 5VDC Power Ground)	9	+5VDC

DB9-Pin-Definition für andere Typen der IC-24/48-Serie:


Stecknadel	Definition	Stecknadel	Definition
1-4	NC	7	RS485-A
5	GND	8	RS485-B
6	NC	9	+5VDC

1.3 Anschlussplan

NICHT Batteriemodus

Batteriemodus

Unterstützte Batterietypen: AGM、GEL、FLD、LiFePO4

WARNUNG

AC-Lasten sind nach der Ausgangsleistung des Wechselrichters/Ladegeräts zu bestimmen. Wenn die Last, die maximale Ausgangsleistung überschreitet, kann dies den Wechselrichter/das Ladegerät beschädigen.

- VORSICHT
- Bestätigen Sie für verschiedene Batterietypen die relevanten Parameter vor dem Einschalten.
- Der Nicht-Batterie-Modus und der Batterie-Modus k\u00f6nnen durch Einstellung von Punkt 0 eingestellt werden.

2 Einbauanleitung

2.1 Allgemeine Installationshinweise

- · Lesen Sie vor der Installation, alle Installationsanweisungen im Handbuch, sorgfältig durch.
- Seien Sie beim Einbau der Batterien sehr vorsichtig. Tragen Sie eine Schutzbrille, wenn Sie die offene Bleibatterie einbauen, und spülen Sie sie rechtzeitig mit sauberem Wasser ab, wenn Sie mit der Batteriesäure in Kontakt kommen
- Halten Sie den Akku von Metallgegenständen fern, was zu einem Kurzschluss des Akkus führen kann.
- Beim Laden der Batterie kann saures Gas entstehen. Stellen Sie sicher, dass die Umgebung gut bel
 üftet
 ist
- Der Wechselrichter/Ladegerät benötigt genügend Abstand oben und unten für einen ordnungsgemäßen Luftstrom. Installieren Sie den Wechselrichter/Ladegerät und die Blei-Säure-Flüssigbatterie nicht im selben Schrank, um zu vermeiden, dass das Säuregas der Batterien den Wechselrichter/Ladegerät korrodiert.
- Laden Sie die Batterien nur innerhalb des Regelbereichs dieses Wechselrichters/Ladegeräts.
- Lose Stromanschlüsse und korrodierte Drähte können zu hoher Hitze führen, die die Drahtisolierung schmelzen, umgebende Materialien verbrennen oder sogar einen Brand verursachen kann. Sorgen Sie für enge Verbindungen und sichem Sie Kabel mit Klemmen, um zu verhindern, dass sie beim Bewegen des Wechselrichters / Ladegeräts schwanken.
- Wählen Sie die Systemkabel entsprechend der Stromdichte von nicht mehr als 3,5 A /mm² (gemäß Artikel 690 NFPA70 des National Electrical Code).
- Vermeiden Sie direkte Sonneneinstrahlung und Regeneinfluss, wenn Sie eine Installation im Freien planen.
- Nach dem Ausschalten des Netzschalters befindet sich immer noch eine hohe Spannung im Wechselrichter / Ladegerät. Öffnen oder berühren Sie daher nicht die internen Komponenten und führen Sie nach der vollständigen Entladung des Kondensators keine zugehörigen Operationen durch.
- Installieren Sie den Wechselrichter/das Ladegerät nicht in einer rauen Umgebung wie feucht, fettig, brennbar, explosiv oder Staubansammlung.
- Die DC-Eingangsklemme ist mit einem Verpolungsschutz ausgestattet. Daher verursacht die umgekehrte Verbindung der DC-Eingangsklemme keine tödlichen Schäden am Produkt. Es wird jedoch dringend empfohlen, den Wechselrichter / das Ladegerät nach dem normalen Betrieb mit der PV-Anlage und dem Versorgungsunternehmen zu verbinden.
- Sowohl der Stromeingang als auch der AC-Ausgang sind von hoher Spannung, berühren Sie nicht die Kabelverbindung, um einen elektrischen Schlag zu vermeiden.

Um Verletzungen zu vermeiden, berühren Sie den Lüfter nicht, während er grbeitet.

2.2 Vor der Installation

2.2.1 Überprüfen Sie die Packliste

- Wechselrichter/Ladegerät 1 Stück
- Bedienungsanleitung 1Stück
- Mitgeliefertes Zubehör 1 Stück (Details beziehen sich auf die Datei "Zubehörliste", die mit dem Wechselrichter / Ladegerät geliefert wird.)

2.2.2 Vorbereiten von Modulen

1) Batterie

Die empfohlene Kabelgröße der Batterie und des Leistungsschalters ist wie folgt.

Modell	Kabelgröße des Akkus	Sicherungsautomat	Ringklemme
IC-24/3000/100/80	35mm²/1AWG	200A	RNB38-8S
IC-48/5000/80/60	35mm²/1AWG	200A	RNB38-8S

Herstellen des Batterieanschlusskabels

Step1: Ringklemme 2 Stück (mitgeliefertes Zubehör).

Schritt 2: Batterie positive und negative Verbindungsdrähte 2 Stück (rot +, schwarz -). Die Drahtlänge wird nach dem tatsächlichen Bedarf des Kunden bestimmt.

Schritt 3: Abisolieren Sie ein Ende des Batterieanschlusskabels für ca. d mm ab (Größe d wird entsprechend der Ringklemme bestimmt).

Schritt 4: Führen Sie den abisolierten Draht durch die Ringklemme und befestigen Sie den Draht fest mit einer Drahtklemme.

2) AC-Last

Die empfohlene Drahtgröße der AC-Last und des Leistungsschalters ist wie folgt.

Modell	Lastdrahtgröße	Sicherungsautomat	Drehmoment
IC-24/3000/100/80	4mm²/11AWG	25A	1.2N.M
IC-48/5000/80/60	6mm²/9AWG	40A	1,2N.M

Herstellen des Verbindungsdrahtes der AC-Last:

Streifen Sie die AC-Lastanschlussdrähte (3 Stück) für ca. 10 mm ab.

Symbole	Abkürzung	Name	Farbe
L	LINIE	Quirl	Braun/Schwarz
N	Neutral	Neutrale Linie	Blau
<u>_</u>	_	Grundlinie	Gelblich-grün

3) PV-Module

Die empfohlene Drahtgröße des PV-Moduls und des Leistungsschalters ist wie folgt.

Da der Ausgangsstrom des PV-Generators je nach Typ, Verbindungsmethode oder Sonneneinstrahlungswinkel variiert, kann seine minimale Drahtgröße durch den Kurzschlussstrom (ISC) berechnet werden. Bitte beachten Sie den ISC-Wert in den Spezifikationen des PV-Moduls. Wenn die PV-Module in Reihe geschaltet sind, entspricht der Gesamt-ISC dem ISC eines BELIEBIGEN PV-Moduls. Wenn die PV-Module parallelgeschaltet werden, entspricht der gesamte ISC dem ISC aller PV-Module. Bitte beachten Sie die folgende Tabelle:

Modell	PV-Drahtgröße	Sicherungsautomat
IC-24/3000/100/80	6mm²/9AWG	40A
IC-48/5000/80/60	6mm²/9AWG	40A

Herstellen des Anschlusskabels des PV-Moduls:

Schritt 1: Jeder MC4-Stecker und jede Buchse Klemme 1 Stück (mitgeliefertes Zubehör)

Schritt 2: PV-Modul positive und negative Anschlussdrähte 2 Stück (rot +, schwarz -). Die Drahtlänge wird nach dem tatsächlichen Bedarf des Kunden bestimmt.

Schritt 3: Isolieren Sie ein Ende des positiven Drahtes des PV-Moduls für ca. 5 mm ab und drücken Sie den freiliegenden Draht auf den inneren Kern des MC4-Steckers, wie unten gezeigt:

Schritt 4: Drücken Sie den Kupferdraht und den inneren Kern des MC4-Steckers mit einer Zange fest und stellen Sie sicher, dass die Verbindung sicher ist.

Schritt 5: Schrauben Sie die Mutter des MC4-Steckers ab, setzen Sie den inneren Kern in den MC4-Anschluss ein und schrauben Sie die Mutter.

Schritt 6: Isolieren Sie ein Ende des negativen Drahtes des PV-Moduls für ca. 5 mm ab und drücken Sie den freiliegenden Draht auf den inneren Kern des MC4-Buchsenkopfes, wie unten gezeigt:

Schritt 7: Drücken Sie den Kupferdraht und den inneren Kern des MC4-Buchsenkopfes mit einer Zange fest und stellen Sie sicher, dass die Verbindung sicher ist.

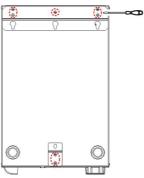
Schritt 8: Schrauben Sie die Mutter der MC4-Buchse ab, setzen Sie den inneren Kern in den MC4-Anschluss ein und schrauben Sie die Mutter.

4) Netzversorgungs-Eingang / AC-IN

Die empfohlene Drahtgröße des Versorgungseingangs und des Leistungsschalters ist wie folgt.

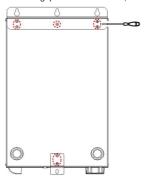
Modell	Kabelgröße des Versorgungsunternehmens	Sicherungsautomat	Drehmoment
IC-24/3000/100/80	4mm²/11AWG	25A	1.2N.M
IC-48/5000/80/60	6mm²/9AWG	40A	1,2N. M

Herstellen des Verbindungskabels des Dienstprogrammeingangs:


Streifen Sie zwei Anschlussdrähte des Versorgungseingangs für ca. 10 mm ab.

Symbole	Abkürzung	Name	Farbe
L	LINIE	Quirl	Braun/Schwarz
N	Neutral	Neutrale Linie	Blau

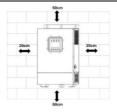
2.3 Bestimmen der Installationsposition


Schritt 1: Entfernen Sie montageplatte 1 und montageplatte 2 hinter dem Wechselrichter/Ladegerät mit einem Schraubendreher.

Schritt 2: Markieren Sie die Einbaulage mit der Montageplatte 1. Der Abstand zwischen den beiden Montagelöchern beträgt 300mm.

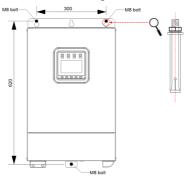
Schritt 3: Drehen Sie die Richtung der Montageplatte 1 und Platte 2, installieren Sie sie erneut.

2.4 Installieren Sie den Wechselrichter/das Ladegerät


Explosionsgefahr! Installieren Sie den Wechselrichter/das Ladegerät niemals in einem versiegelten Gehäuse mit überfluteten Batterien! Installieren Sie den Wechselrichter/das Ladegerät nicht in einem begrenzten Bereich, in dem sich das Batteriegas ansammeln kann.

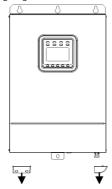
- Der Wechselrichter / das Ladegerät kann an den Beton- und massiven Ziegelwänden befestigt werden und kann nicht an der hohlen Ziegelwand befestigt werden.
- Der Wechselrichter/Ladegerät benötigt mindestens 20cm Abstand rechts und links und 50cm Abstand oben und unten.

Schritt 1: Bestimmen Sie den Installationsort und den

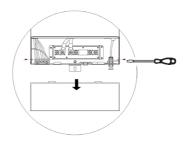

Wärmeableitungsraum. Der Wechselrichter/Ladegerät benötigt mindestens 20cm Abstand rechts und links und 50cm Abstand oben und unten.

Schritt 2: Bohren Sie entsprechend der mit der Montageplatte 1 markierten Installationsposition zwei
M10-Löcher mit einer passenden Bohrmaschine

Schritt 3: Stecken Sie die Schrauben der M8-Bolzen und die Stahlrohre in die beiden M10-Löcher.


- Schritt 4: Installieren Sie den Wechselrichter / das Ladegerät und bestimmen Sie die Installationsposition des M10-Lochs (an der Unterseite des Wechselrichters / der Ladung).
- Schritt 5: Entfernen Sie den Wechselrichter/ das Ladegerät und bohren Sie ein M10-Loch gemäß der in Schritt 4 festaeleaten Position.
- Schritt 6: Stecken Sie die Schraube des M8-Bolzens und das Stahlrohr in das M10-Loch.
- Schritt 7: Installieren Sie den Wechselrichter / das Ladegerät und sichern Sie die Muttern mit einer Hülse.

2.5 Verdrahtung


1) Entfernen Sie die Anschlussabdeckung.

Entfernen Sie die Abdeckungen des AC-Ausgangs / AC-Eingangs / Dienstprogramm-Eingangsanschlusses mit einem Schraubendreher, wie unten gezeigt:

2) Entfernen Sie die Abdeckung des Wechselrichters/Ladegeräts.

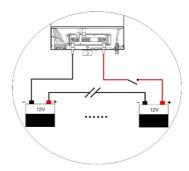
Entfernen Sie die Schrauben neben dem Wechselrichter/Ladegerät mit einem Schraubendreher, wie unten gezeigt:

3) Schließen Sie die Batterie an

VORSICHT

- stellen Sie sicher, dass die Leitungen der Pole "+" und "-" korrekt angeschlossen sind.
 Ein Leistungsschalterstrom beträgt das 1,25- bis 2-fache des Nennstroms, der auf
- Ein Leistungsschalterstrom beträgt das 1,25- bis 2-fache des Nennstroms, der au der Batterieseite nicht länger als 200 mm installiert werden muss.

· Anschlussreihenfolge der Batterie

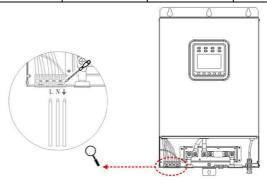

Schritt 1: Entfernen Sie die Schraube des Wechselrichters / Ladegeräts mit einer Hülse, deren Drehmoment 3,5 N.M beträgt.

Schritt 2: Verbinden Sie den Ringanschluss des Batterieanschlusskabels mit dem Pluspol des Wechselrichters/Ladegeräts.

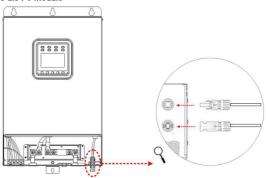
Schritt 3: Installieren Sie die Schraube und befestigen Sie sie mit der Hülse.

Schritt 4: Schließen Sie den Minuspol des Wechselrichters / Ladegeräts an und sichem Sie ihn nach Schritt1

Schritt3.



4) Schließen Sie die AC-Last an



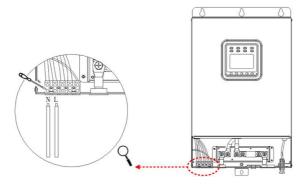
- Gefahr eines elektrischen Schlags! Bitte schließen Sie bei der Verdrahtung der AC-Last den Leistungsschalter nicht und stellen Sie sicher, dass die Polleitungen korrekt angeschlossen sind.
- Wenn ein Versorgungseingang vorhanden ist, muss der Wechselrichter/das Ladegerät an die Masseklemme angeschlossen werden.
- Wir übernehmen keine Verantwortung für die unnötige Gefahr, wenn das Bodenterminal nicht korrekt angeschlossen ist.

Siebdruck	Abkürzung	Name	Farbe
L	LINIE	Quirl	Braun/Schwarz
N	Neutral	Neutrale Linie	Blau
<u></u>	_	Grundlinie	Gelblich-grün

5) Verbinden Sie die PV-Module

WARNUNG

Gefahr eines elektrischen Schlags! Bitte schließen Sie bei der Verdrahtung der PV-Module den Leistungsschalter nicht und achten Sie darauf, dass die Leitungen der Pole "+" und "-" korrekt angeschlossen sind.


Wenn der Wechselrichter/das Ladegerät in einem Gebiet mit häufigen Blitzeinschlägen verwendet wird, wird die Installation eines externen Überspannungs-/Blitzableiters empfohlen.

6) Schließen Sie den Eingang des Dienstprogramms an

Gefahr eines elektrischen Schlags! Schließen Sie bei der Verdrahtung des Stromeingangs den Leistungsschalter nicht und stellen Sie sicher, dass die Leitungen der Pole korrekt angeschlossen sind.

Siebdruck	Abkürzung	Name	Farbe
L	LINIE	Quirl	Braun/Schwarz
N	Neutral	Neutrale Linie	Blau

7) Zubehör anschließen

A. RBVS-Schnittstelle

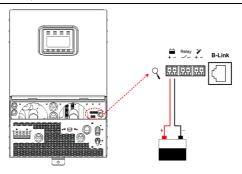
♦ Funktion:

Diese Schnittstelle kann mit dem Batteriespannungsmesskabel verbunden werden, um die Batteriespannung genau zu erfassen. Die Abtastdistanz beträgt nicht mehr als 20 Meter.

Benötigt:

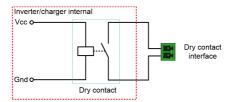
3.81-2P Terminal 1 Stück

Positiver und negativer (rot+, schwarz-) Draht je 1 Stück (bestimmen Sie die Länge und Drahtgröße des Anschlussdrahtes nach den tatsächlichen Bedürfnissen des Kunden.)


Herstellung des RBVS-Drahtes:

Ein Ende des positiven und negativen Drahtes ist mit der 3.81-2P-Klemme verbunden. Das andere Ende ist

mit den positiven und negativen Klemmen der Batterie verbunden.

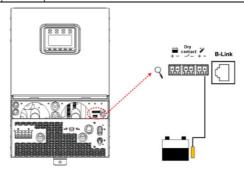

Achten Sie beim Anschließen des RBVS-Kabels auf die positiven und negativen Pole (rot +, schwarz -).

B. Potentialfreie-Schnittstelle / Relais Kontakt

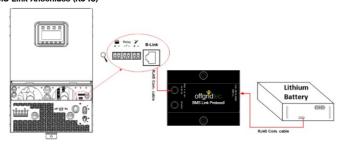
♦ Funktion:

Die potentialfreie Schnittstelle kann den Generator ein- und ausschalten und ist parallel mit dem Schalter des Generators verbunden.

♦ Funktionsprinzip:


Wenn die Batteriespannung die EIN-Spannung des Relaiskontakts (DON) erreicht, wird der Relaiskontakt eingeschaltet. Seine Spule wird erregt. Der Relais-Kontakt kann Lasten von maximal 125VAC /1A, 30VDC/1A betreiben. Je nach Batterietyp des Wechselrichter-Ladegeräts sind die Standardwerte für die Spannung des Relaiskontakts EIN (DON) und die Spannung des Relaiskontakts AUS (DOF) unterschiedlich. Einzelheiten hierzu finden Sie in Kapitel 3.5 Einstellungen > Punkt 19 DON und Punkt 20 DOF.

C. Schließen Sie den Temperatursensor an


Kategorie	Name	Modell	Bild
Mitgeliefertes Zubehör	Externer Raum Temperatursensor	RT-MF58R47K3.81A	03
Sonderzubehör	Batterie-Temperatursensor	RTS300R47K3,81A	O

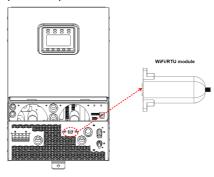
Angenommen, der Remote-Temperatursensor ist nicht mit dem Controller verbunden. Die Standardeinstellung für die Lade- oder Entladetemperatur der Batterie ist 25 $^{\circ}$ C ohne Temperaturkompensation.

D. BMS-Link Anschluss (RJ45)

♦ Funktion:

Über einen BMS-Link-Konverter können die BMS-Protokolle verschiedener Lithiumbatteriehersteller in das Standard-BMS-Protokoll unseres Unternehmens umgewandelt werden. Darüber hinaus realisiert es die Kommunikation zwischen dem Wechselrichter/Ladegerät und dem BMS.

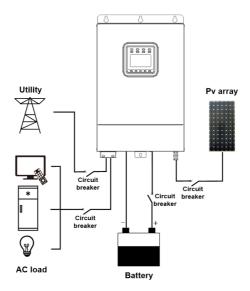
♦ Benötigt wird:


(Inklusive) CC-RS485-RS485-350mm (Verbinden Sie den Wechselrichter/das Ladegerät mit dem BMS-Link-Konverter)

(Optional) RS485-Kommunikationskabel (Schließen Sie die Lithiumbatterie an den BMS-Link-Konverter an. Stellen Sie das Kabel entsprechend der BMS-Sequenz der Lithiumbatterie ein)

Dieser Verbindungsport wird nur zum Anschließen des BMS-Link-Konverters verwendet. Details zum BMS-Link finden Sie im BMS-LINK Handbuch.

E. RS485-Schnittstelle (DB9-Stecker)



♦ Funktion:

Für Basis-IC-24/48-Produkte bietet die DB9-Schnittstelle eine 0,2-A/5-V-Stromversorgung und kann an ein WiFi-Modul oder einen PC angeschlossen werden.

Bei IC-24/48-Produkten vom Typ RTU bietet die DB9-Schnittstelle eine 0,2-A/12-V-Stromversorgung und kann an RTU, WiFi-Modul oder PC angeschlossen werden.

8) Installieren Sie die Abdeckung und befestigen Sie die Schrauben.

2.6 Betrieb des Wechselrichters/Ladegeräts

- 1) Schließen Sie den Leistungsschalter der Batterieseite.
- 2) Drehen Sie den Wippschalter an der Seite des Wechselrichters/Ladegeräts in den EIN-Zustand. Der Wechselrichter/ das Ladegerät funktioniert im Allgemeinen, wenn die Anzeige durchgehend eingeschaltet ist.

Stellen Sie sicher, dass die Batterieverbindung korrekt ist und der Batterieleistungsschalter zuerst eingeschaltet ist. Schließen Sie dann die PV-Anlage und die Leistungsschalter, nachdem der Wechselrichter / das Ladegerät normal läuft. Auch hier übernehmen wir keine Verantwortung dafür, dass wir den Vorgang nicht befolgen.

- 3) Schließen Sie den Leistungsschalter der PV-Anlage.
- 4) Schließen Sie den Leistungsschalter des Versorgungseingangs.
- 5) Nachdem der AC-Ausgang normal ist, schalten Sie die AC-Lasten nacheinander ein. Der Wechselrichter / das Ladegerät funktioniert normalerweise gemäß dem eingestellten Modus. Schalten Sie nicht alle Lasten gleichzeitig ein, um den Schutz durch einen zu hohen Impulsstrom zu vermeiden.

- Bei der Stromversorgung verschiedener AC-Lasten wird empfohlen, zuerst die Last mit einem großen Impulsstrom einzuschalten. Und dann schalten Sie die Last mit einem kleineren Impulsstrom ein, nachdem der Lastausgang stabil ist.
- Wenn der Wechselrichter/das Ladegerät nicht ordnungsgemäß funktioniert oder die Anzeige eine Anomalie anzeigt, lesen Sie bitte "Fehlerbehebung" oder kontaktieren Sie uns.

3 Schnittstelle

3.1 Indikator

Indikator	Farbe	Status	Definition
		AUS	Keine Utility-Eingabe
		451	Netzversorgung angeschlossen,
Utility Charge	0-0-	AN	aber nicht aufgeladen
<u>(</u> 賽)	Grün	Langsam blinkend (0,5 Hz)	Aufladen durch Netzversorgung
		Schnelles Blinken (2,5 Hz)	Fehler Netzversorgung
		AUS	Kein PV-Eingang
PV Charge		AN	PV angeschlossen, aber es wird nicht geladen
	Grün	Langsam blinkend (0,5 Hz)	PV lädt
		Schnelles Blinken (2,5 Hz)	PV-Ladefehler
		AUS	Wechselrichter ist ausgeschaltet
Inverter	Grün	AN	Wechselrichter Standby oder Bypass
		Langsam blinkend (0,5 Hz)	Wechselrichter liefert Strom
		Schnelles Blinken (2,5 Hz)	Wechselrichter-Fehler
Load		AUS	Abladen
	Grün	AN	Laden auf
=	Crin	AUS	Relais getrennt
Relay	Grün	Auf fest	Relais angeschlossen
		AN	Remote-Control-Last auf per Cloud-Plattform oder Telefon-APP
		Langsam blinkend (0,5	Remote-Control-Last per
Remote	Grün	Hz)	Cloud-Plattform oder Telefon-APP
		AUS	Keine Fernbedienung
		AUS	Wechselrichter liefert Strom
=/~ Bypass	Grün	Langsam blinkend (0,5	Versorgungsunternehmen
		Hz)	Stromversorgung
		AUS	Gerät normal
Fault	Rot	AN	Gerätefehler

3.2 Knopf

Knopf	Operation	Anweisung	
Langes Drücken (•2,5		Beenden der aktuellen Schnittstelle	
		Beseitigen Sie die Fehler	
UP DOWN	Klicken(<50ms)	1. Browse / Setting Interface: "UP" für Bild nach oben; "Down" für Page Down 2. Ändern Sie die Parameterwerte: "UP", um den Wert zu erhöhen: "DOWN", um den Wert zu verringern	
SET/ENTER	Klicken(<50ms)	Schalten Sie die Seite auf die Echtzeit-Überwachungsschnittstelle um Einstellungen bestätigen	
	Langes Drücken (>2,5 Sek.)	Wechseln Sie zwischen "Echtzeit-Überwachungsschnittstelle", "Einstellungsschnittstelle", "Parameterschnittstelle". 2.Einstellungen bestätigen	
AC OUT	Langes Drücken (>2,5 Sek.)	Ein- und Ausschalten des AC-Ausgangs	

3.3 LCD

Symboldefinition

Symbol	Definition	Symbol	Definition
~	Netzversorgung angeschlossen und aktiv		PV-Anschluss und Laden

***	Netzversorgung getrennt Netzversorgung angeschlossen aber ohne Spannung	1	PV getrennt PV angeschlossen, aber die Spannung ist niedrig, z.B. bei Nacht
	Lastausgang EIN		Lastausgang AUS
	Batteriekapazität ⁽¹⁾ niedriger als 15% ⁽¹⁾		Batteriekapazität ⁽¹⁾ 15% [~] 40%
	Batteriekapazität ⁽¹⁾ 40% ~ 60%		Batteriekapazität ⁽¹⁾ 60% ~ 80%
	Batteriekapazität ⁽¹⁾ 80% ~ 100%	BMS	Symbol ON: Batterie mit BMS Symbol AUS: Batterie ohne BMS Achtung: Bitte folgen Sie der BMS-Steuerungslogik, um die Parameter für die Verwendung von Batterien mit BMS einzustellen.
100%	Lastleistung 8 ~ 25% (eine Zelle)	100%	Lastleistung 25 ~ 50% ((zwei Zellen))
100%	Lastleistung 50 ~ 75% (drei Zellen)	100%	Lastleistung 75 ~ 100% (vier Zellen)

- (1) Nachdem der IC-24/48 zum ersten Mal eingeschaltet wurde, ist die auf der LCD-Anzeige angezeigte Batteriekapazität möglicherweise ungenau. Um die verfügbare Batteriekapazität genau darzustellen, ist der folgende Prozess der Selbstkalibrierung und des Selbstlernens erforderlich.
- Wenn die Batteriespannung die Niederspannungs-Trennspannung oder die Float-Ladespannung erreicht, kalibriert der Wechselrichter/das Ladegerät zum ersten Mal die Batteriekapazität.
- Wenn die Batterie aus dem entladenen Zustand in den vollständig geladenen Zustand übergeht,
 kalibriert der Wechselrichter/das Ladegerät die Batteriekapazität erneut.

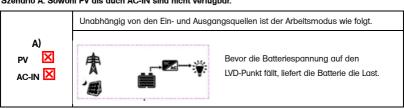
Wenn die angeschlossene Lithiumbatterie (mit BMS) mit einer Batteriekapazitätsanzeige ausgestattet ist, wird die Lithiumbatteriekapazität gemäß BMS angezeigt.

Schnittstellendefinition

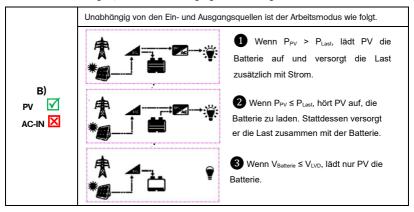
Artikel	Einstellungen	Inhalt
INPUT		Solare Priorität
Solar Priority	Eingang	Versorgung & Solar
		Solar

OUTPUT		Versorgungspriorität
Inverter Priority	Ausgang	Wechselrichter-Priorität
Load 888.8 VAhHz KWASM	Last	AC-Ausgangsspannung AC Ausgangsstrom AC-Ausgangsleistung
		AC-Ausgangsfrequenz
		Batteriespannung Max. Ladestrom (PV-Ladestrom +
888:8 VAh%	Batterie	Netzladestrom) Batterietemperatur
	PV	Akku-SOC PV-Eingangsspannung PV-Eingangsstrom PV-Eingangsleistung PV-Eingangsleistung
UHIRY PV 888.8 VAh	Versorgungsunternehmen	Eingangsspannung des Versorgungsunternehmens Eingangsstrom zum Laden von Versorgungsunternehmen Eingangsleistung für das Laden von Versorgungsunternehmen Versorgungs-Input-Kapazität
AGM GEL FLD LFP LNCM USER	Batterietyp	AGM GEL FLD LFP8/LFP15/LFP16 LNCM7/LNCM14 AGM/GEL/FLD/LFP/LNCM+BENUTZER

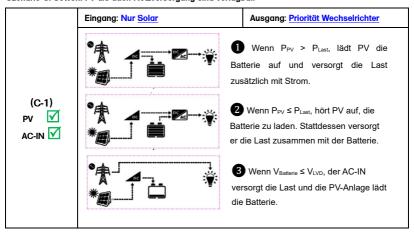
3.4 Betriebsart


3.4.1 Abkürzung

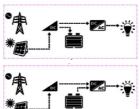
Abkürzung	Illustration	
P _{PV}	PV-Leistung PV-Leistung	
PLAST	Lastleistung	
V _{BAT}	Batteriespannung	
LVR	Niederspannung Wiederanschlussspannung	
LVD	Niederspannung Trennspannung	
AOF	Hilfsmodul OFF-Spannung	
AON	Hilfsmodul ON-Spannung	
MCC	Max. Ladestrom	

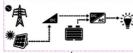

3.4.2 Batteriemodus

	Solar	Nur Solarenergie kann die Batterie aufladen, unabhängig davon, ob ein Versorgungsunternehmen verfügbar ist oder nicht.
Solarpriorität EINGANG		Wenn PV-Strom ausreicht, lädt PV die Batterie auf. Wenn die Batteriespannung niedriger als AON ist, lädt das Versorgungsunternehmen die Batterie als Ergänzung auf. Wenn die Batteriespannung höher als AOF ist, stoppt das Dienstprogramm das Aufladen der Batterie. Hinweis: Die AOF- und AON-Einstellung bezieht sich auf Punkt 17/18 auf der Experten-Ebene für Ingenieure.
	Versorgungsunternehmen & Solar	PV und Utility laden die Batterie gleichzeitig auf. Wenn PV-Strom ausreicht, ist der PV-Strom die primäre Quelle. Hinweis: Nach Auswahl dieses Arbeitsmodus wird der Ausgabemodus nicht frei gesteuert, kann jedoch eingestellt werden. Details entnehmen Sie bitte den folgenden Anweisungen.
AUSGANG Priorität Wechselrichter Priorität Wechselrichter Illefert Hinw 7 auf Das \ Wenn Priorität Netzversorgung Ergär		PV-Strom ist ausreichend (nämlich zusätzliche Energie ist außer dem Laden der Batterie vorhanden), PV liefert die Last vorrangig. Wenn die PV-Leistung nicht ausreicht, liefert die Batterie die Last als Ergänzung. Wenn die Batteriespannung niedriger als LVD ist, liefert das Versorgungsunternehmen die Last als Ergänzung. Hinweis: LVD- und LVR-Einstellungen beziehen sich auf Punkt 7 auf der Standardschnittstelle für normale Benutzer.
		Das Versorgungsunternehmen liefert die Last vorrangig. Wenn der Nutzen abnormal ist, liefert der PV die Last als Ergänzung. Wenn die PV-Leistung nicht ausreicht, liefert die Batterie die Last als Ergänzung.


Szenario A: Sowohl PV als auch AC-IN sind nicht verfügbar.

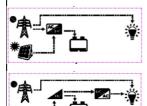
Szenario B: PV ist verfügbar, aber die Netzversorgung ist nicht verfügbar.


Szenario C: Sowohl PV als auch Netzversorgung sind verfügbar.



Input: Solarpriorität

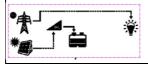
Ausgang: Priorität Wechselrichter


1 Wenn Ppv > Pload, lädt PV die Batterie auf und versorgt die Last zusätzlich mit Strom.

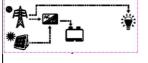
2 Wenn P_{PV} ≤ P_{Last}, hört PV auf die Batterie zu laden. Stattdessen versorat er die Last zusammen mit der Batterie.

(C-3)

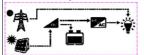
3 Wenn die Batteriespannung niedriger oder gleich AON ist und nicht auf AOF geladen wurde, zeigen die folgenden Schnittstellen unterschiedliche Bedingungen an.



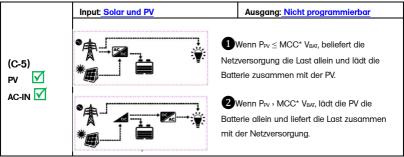
Wenn P_{PV ≤} MCC* V_{BAT}, beliefert die Netzversorgung die Last allein und lädt die Batterie zusammen mit dem PV.

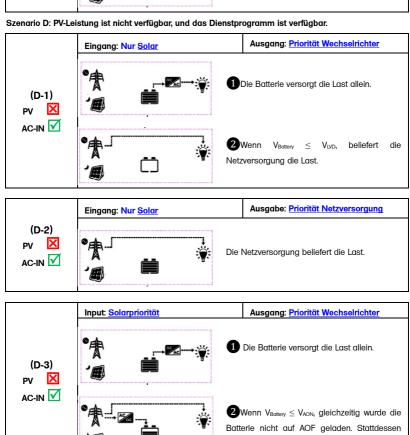

Input: Solarpriorität

Ausgabe: Priorität Netzversorgung

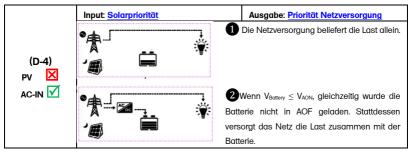


1 PV lädt die Batterie auf und die Netzversorgung beliefert die Last.

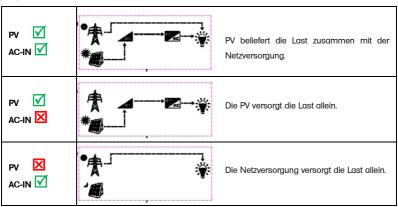

2 Wenn die Batteriespannung niedriger oder gleich AON ist und nicht auf AOF geladen wurde, zeigen die folgenden Schnittstellen unterschiedliche Bedingungen an.



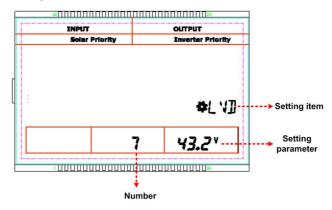
Wenn PPV < MCC* VBAT, beliefert die Netzversorauna die Last allein und lädt die Batterie zusammen mit dem PV.




Wenn PPV > MCC* VBAT, lädt die PV die Batterie allein und beliefert die Last zusammen mit der Netzversorgung.



versorgt das Netz die Last und lädt die Batterie.



3.4.3 Kein Batteriemodus

3.5 Einstellungen

1) Standardschnittstelle für gängige Benutzer

Transaktionen:

Schritt 1: Drücken Sie in der Echtzeitschnittstelle lange auf die SET / ENTER-Taste, um die Standardschnittstelle aufzurufen.

Schritt 2: Drücken Sie die UP / DOWN-Taste, um den Einstellungspunkt auszuwählen.

Schritt 3: Drücken Sie lange die SET / ENTER-Taste, um die Parametereinstellungsschnittstelle aufzurufen.

Schritt 4: Drücken Sie die UP / DOWN-Taste, um die Parameter zu ändern.

Schritt 5: Drücken Sie zur Bestätigung die SET / ENTER-Taste.

Schritt 6: Drücken Sie die ESC-Taste, um den Vorgang zu beenden.

Festlegen von Elementen:

NEIN.	Anweisung	Einstellung		
	Kein Batteriemodus	* ETS 0 PES	Batteriemodus (Standard)	
0	oder Batteriemodus	\$ €75	Kein Batteriemodus	
1	Dath of the	ΦETP AGM	AGM (Standard)	
'	Batterietyp	œE. ∤	GEL	

		\$ ETP	
		FLD (FLD
		\$ €TP : 8	LFP8
		\$ €TP	LFP15
		◆ ETP	LFP16
		◆ €TP	LNCM7
		Ф ЕТР 1 14	LNCM14
			AGM/GEL/FLD/LFP/LNCM + Benutzer
		AGM USER	Wichtig: "Benutzer" Batterietyp kann mit anderen Batterietypen kombiniert und entsprechende Parameter
			eingestellt werden.
		INPUT Solar Priority #C5P	Solarpriorität (Standard)
2	Lademodus	2 20047 Utiley & Solar 2	Versorgung & Solar
		жес5Р Ф С5Р	Solar
		utility OUTPUT Priority	Priorität des Dienstprogramms (Standard)
3	Ausgabemodus	OUTPUT Inverter Priority	Wechselrichter-Priorität
		3	
4	Temperatureinheit	◆ TMU 4	°C (Standard)

		⇔ Tr1Ll		
			°F	
-		<u>Ψ <i>F</i></u> ΦΕLΤ		
		₩ ₀ L i	30S (Standard)	
		5 <i>30.0</i> s	ooo (otanaara)	
	ZEIT der	⇔ ELT		
5	LCD-Hintergrund	5 <i>60.0</i> s	60ER JAHRE	
	beleuchtung	5 60.0 s 4 8l t		
		5 <i>100.0</i> s	100S (auf Feststoff)	
		\$ \$ \$ \$ \$		
		#6/12	EIN (Standard)	
6	Summer-Alarmsc	5 DN		
	halter	\$ 8.45	AUS	
		5 OFF	AUS	
		☆ L '\]]		
	Niederspannung Trennspannung		Benutzerdefiniert für da	
		7 21.6	24V-System: 21,6 ~ 32,0 V	
		AGM (Standard) /GEL/FLD: 21,6 V	Schrittweite: lange drücken für 1V, kurz drücken für 0,1V	
		LFP8: 25,5 V		
7		LCNM7: 25,5 V		
′		AGM ФĽ V∭		
		7 43.2°	Benutzerdefiniert für das	
		AGM (Standard) /GEL/FLD: 43,2 V	48V-System: 43,2 ~ 64,0 V	
		LFP15: 47,8 V	Schrittweite: lange drücken für	
		LFP16: 51,0 V	1V, kurz drücken für 0,1V	
		LCNM14: 51,0 V		
		♣ Ĺ ¼₽	Demokrandefinient für der	
		8 25.0°	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V	
		AGM (Standard) /GEL/FLD: 25,0 V	•	
		LFP8: 26,0 V	Schrittweite: lange drücken für 1V, kurz drücken für 0,1V	
	Niederspannung	LCNM7: 26,0 V	TV, Kuiz diuckeii iui 0,1V	
8	Wiederanschluss	\$ L VR		
	spannung	8 50.0°	Benutzerdefiniert für das	
		AGM (Standard) /GEL/FLD: 50,0 V	48V-System: 43,2 ~ 64,0 V	
		LFP15: 48,8 V	Schrittweite: lange drücken für	
		LFP16: 52,0 V	1V, kurz drücken für 0,1V	
		LCNM14: 52,0 V		

Wenn der Ausgangsmodus die Priorität des Wechselrichters hat und die

VORSICHT	Batteriespannung niedriger ist als die Niederspannungstrennspannung (konfigurierbar),	
	liefert das Versorgungsunternehmen die Last.	

2) Erweiterte Schnittstelle für Fachpersonal

Transaktionen:

Schritt 1: Drücken Sie in der Echtzeit-Schnittstelle lange die UP + DOWN-Taste, um die erweiterte Benutzeroberfläche aufzurufen.

Schritt 2: Drücken Sie die UP / DOWN-Taste, um den Einstellungspunkt auszuwählen.

Schritt 3: Drücken Sie lange auf die SET / ENTER-Taste, um den Parameter einzugeben, der die Schnittstelle konfiguriert.

Schritt 4: Drücken Sie die UP / DOWN-Taste, um die Parameter zu ändern.

Schritt 5: Drücken Sie zur Bestätigung die SET / ENTER-Taste.

Schritt 6: Drücken Sie die ESC-Taste, um den Vorgang zu beenden.

Festlegen von Elementen:

NEIN.	Anweisung		Einstellung
	Ladezeit	фДСТ 9 30 м	30 min.
		фEET 9 50 м	60 min.
9	verlängern	⇔ EET 9 120 m	120 min. (Standard)
		фЕСТ 9 480 н ФЕСТ	180 min.
	Ladezeit ausgleichen	46 40 40 M	30 min.
10		10 60 H	60 min.
10		лан + ЕСТ 1 0 120 н	120 min. (Standard)
		фЕ[T 1 0 180 н	180 min.
11	Ladespannu ng ausgleichen	AGM (Standard) : 29,2 V GEL: —— FLD: 29,6 V	Es kann nicht eingestellt werden, was sich je nach Ladespannung ändert.
	-	LFP8: 28,2 V LCNM7: 28,9 V	

		◆ EC V	
		1 1 S8.4Y	
		AGM(Standard): 58.4V	
		GEL:	
		FLD: 59,2 V	
		LFP15: 53,0 V	
		LFP16: 56,5 V	
		LCNM14: 57,8 V	
		agn ♣EE.1	
		12 28.8°	
		AGM (Standard) : 28.8V	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		GEL: 28,4 V	Schrittweite: lange drücken für 1V, kurz drücken für
		FLD: 29,2 V	0,1V
		LFP8: 28,2 V	
		LCNM7: 28,9 V	
12	Ladespannu	⇔ EE'√	
	ng erhöhen	12 57.6°	
		AGM (Standard) : 57.6V	
		GEL: 56,8 V	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		FLD: 58,4 V	Schrittweite: lange drücken für 1V, kurz drücken für 0.1V
		LFP15: 53,0 V	0,1 V
		LFP16: 56,5 V	
		LCNM14: 57,8 V	
		♣ E √P	
		13 25.41	Donate and find at find the OAVO at the OAO ~ OOO V
		AGM(Standard)/GEL/FLD: 26,4	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		V	Schrittweite: lange drücken für 1V, kurz drücken für
	Boost-Span	LFP8: 26,4 V	0,1V
	nung	LCNM7: 26,8 V	
13	Wiederverbi	AGM ♣E √IP	
	ndungsspa	13 S2.81	
	nnung	AGM (Standard) / GEL / FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		52,8 V	Schrittweite: lange drücken für 1V, kurz drücken für
		LFP15: 49,5 V	0,1V
		LFP16: 52,8 V	
		LCNM14: 53,6 V	
		☆ F['\	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
14	Float-Lades pannung	14 27.5	Schrittweite: lange drücken für 1V, kurz drücken für
		AGM (Standard)/GEL/FLD: 27,6	0,1V

		V	
		LFP8: 27,2 V	
		LCNM7: 28,2 V	
		⇔ F['\	
		14 55.2	
		AGM (Standard) / GEL / FLD:	Benutzerdefiniert für das 48V-System: 43,2 $^{\sim}$ 64,0 V
		55,2 V	Schrittweite: lange drücken für 1V, kurz drücken für
		LFP15: 51,0 V	0,1V
		LFP16: 54,4 V	
		LCNM14: 56,4 V	
		\$ □\R	
		15 30.0°	
		AGM (Standard)/GEL/FLD: 30,0	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		riam (Standard), GEET EB. 55,5	Schrittweite: lange drücken für 1V, kurz drücken für
	Observation	LFP8: 28,5 V	0,1V
	Überspannu	,	
	ng	LCNM7: 29,0 V Φ □' \ R	
15	Wiederansc	AGM	
	hlussspann	15 60.0°	_
	ung	AGM (Standard) / GEL / FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		60,0 V	Schrittweite: lange drücken für 1V, kurz drücken für
		LFP15: 53,5 V	0,1V
		LFP16: 57,0 V	
		LCNM14: 58,0 V	
		AGM ♣[] √]]	
		18 32.0°	
		AGM (Standard)/GEL/FLD: 32,0	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		Adivi (Standard)/ GEE/TED: 02,0	Schrittweite: lange drücken für 1V, kurz drücken für
		LFP8: 29,0 V	0,1V
	Überspannu	, ·	
40	ng	LCNM7: 30,0 V Φ []√]]	
16	Trennspann	AGM	
	ung	1	
	_	AGM (Standard) / GEL / FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		64,0 V	Schrittweite: lange drücken für 1V, kurz drücken für
		LFP15: 54,5 V	0,1V
		LFP16: 58,0 V	
		LCNM14: 60,0 V	
		\$ ADF	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
	Hilfsmodul	17 28.0	Schrittweite: lange drücken für 1V, kurz drücken für
17	OFF-Spannu		0.1V
	ng	AGM (Standard) /GEL/FLD: 28,0	HINWEIS: Der Unterschied zwischen AOF und

		٧	AON sollte größer oder gleich 0,5 V sein,
		LFP8: 26,6 V	andernfalls kann die Einstellung nicht
		LCNM7: 27,0 V	gespeichert werden.
		\$ ADF	
		AGM	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		17 56.0°	Schrittweite: lange drücken für 1V, kurz drücken für
		AGM (Standard) /GEL/FLD: 56,0	0,1V
		V	HINWEIS: Der Unterschied zwischen AOF und
		LFP15: 50,0 V	AON sollte größer oder gleich 1 V sein,
		LFP16: 53,3 V	andernfalls kann die Einstellung nicht
		LCNM14: 54,0 V	gespeichert werden.
		\$.1□N	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		18 24.0°	Schrittweite: lange drücken für 1V, kurz drücken für
		1011/0	0,1 V
		AGM (Standard)/GEL/FLD: 24,0	HINWEIS: Der Unterschied zwischen AOF und
		V	AON sollte größer oder gleich 0,5 V sein,
		LFP8: 24,0 V	andernfalls kann die Einstellung nicht
	Hilfsmodul	LCNM7: 24,5 V	gespeichert werden.
18	ON-Spannu	♥ .4□N	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
	ng	18 48.0°	Schrittweite: lange drücken für 1V, kurz drücken für
		AGM (Standard)/GEL/FLD: 48,0	0.1V
		V	HINWEIS: Der Unterschied zwischen AOF und
		LFP15: 45.0 V	AON sollte größer oder gleich 1 V sein,
		LFP16: 48.0 V	andernfalls kann die Einstellung nicht
		LCNM14: 49,0 V	gespeichert werden.
		LCINIVIT4: 49,0 V	gespeichert werden.
		AGM	
		19 22.21	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		AGM (Standard)/GEL/FLD: 22,2	Schrittweite: lange drücken für 1V, kurz drücken für
		V	0,1V
	Circa a la sulta sa	LFP8: 22,2 V	5,1 4
	Einschaltsp	LCNM7: 21,7 V	
19			
19	annung mit	♣]]□N	
19	trockenem		
19	_	18 44.4 ^v	Benutzerdefiniert für das 48V-System: 43.2° 64,0 V
19	trockenem	AGM	, , , ,
19	trockenem	19 44.4° AGM (Standard)/GEL/FLD: 44,4	Schrittweite: lange drücken für 1V, kurz drücken für
19	trockenem	19 44.4° AGM (Standard)/GEL/FLD: 44,4 V LFP15: 41,6 V	, , , ,
19	trockenem	**************************************	Schrittweite: lange drücken für 1V, kurz drücken für
19	trockenem Kontakt	* * * * * * * * * * * * * * * * * * *	Schrittweite: lange drücken für 1V, kurz drücken für 0,1V
19	trockenem	**************************************	Schrittweite: lange drücken für 1V, kurz drücken für

	ung	AGM (Standard)/GEL/FLD: 24,0	0,1V
		V	
		LFP8: 24,0 V	
		LCNM7: 24,5 V	
		Ф]]□F	
		2 0 48.0°	
		AGM (Standard)/GEL/FLD: 48,0	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		V	Schrittweite: lange drücken für 1V, kurze drücken für
		LFP15: 45,0 V	0,1V
		LFP16: 48,0 V	
		LCNM14: 49,0 V	
			IC-24/3000/100/80: 100A (Standard)
			Benutzerdefiniert: 5~100A
21	Maximaler	♣ 11[[IC-48/5000/80/60: 80A (Standard)
21	Ladestrom	2 f 80.0 ^	Benutzerdefiniert: 5~80A
			Schrittweite: lange drücken für 50A, kurz drücken für
			5A
			IC-24/3000/100/80: 80A (Standard)
			Benutzerdefiniert: 2~80A
22	Max.	AGH PATUE	IC-48/5000/80/60: 60A (Standard)
22	Ladestrom	2 2	Benutzerdefiniert: 2~60A
			Schrittweite: lange drücken für 10A, kurz drücken für
			1A
		\$ EFA	AUS (Standard)
24	Fehler	24 OFF	AUS (Standard)
24	beheben	Ф [F.4	AUG
		חם איב	AUF
	Löschen Sie	\$ 9€L	1110 (0)
	die	25 OFF	AUS (Standard)
25	angesamm	\$ 9[L	
	elte	АСМ	AUF
	PV-Energie	25 an	
			100AH (Standard)
			Benutzer definiert: 1~4000AH
			Schrittweite:
26	Batteriekap	⇔ T <u>E</u> E	Unter 200AH: lange drücken für 10A, kurz drücken
20	azität	26 100 0 Ah	für 1A
			Über 200AH: lange drücken für 50A, kurz drücken
			für 5A
			ACHTUNG: Um die Batteriekapazität genau

				anzuzeigen, muss der Kunde diesen Artikel entsprechend der tatsächlichen Batteriekapazität einstellen.
27	Temperaturk ompensatio nskoeffizient	AGM 27	* TEE 3	3 (Standard) 0 (Lithium-Batterie) 0~9 (Nicht-Lithium-Batterie) Schrittweite ist 1
28	Niedrige Temperatur verbietet Ladungstem peratur	лан 28	⇔ TLE 0 €	0°C (Standard) Benutzerdefiniert: -40¯0°C Schrittweite: 5°C
29	Niedrige Temperatur verhindert Entladungst emperatur	лсм 29	\$ TLL 0 C	0°C (Standard) Benutzerdefiniert: -40¯0°C Schrittweite: 5°C
30	Ausgangss pannungsp egel	_{АДМ}	⇔ √₽⊺ 220.0 ¥	220VAC (Standard) für Geräte mit 200V Ausgangsspannung)
		AGM 3 8	\$ \PT 230.0 \	230 V Wechselstrom
	Ausgangsfr equenz	лен З 1	\$ FRE 50.0 №	50 Hz (Standard)
31	(Wenn der Netzeingan g erkannt wird, wird die Ausgangsfr equenz automatisch auf die Netzfrequen z umgeschalt et.)	^{дан} З (Φ FRE 50.0 №	60 Hz

	Lithium-Batt	⇔ LEN	
	erie-Schutz	3 2 OFF	AUS (Standard)
	ermöglichen		
	(stoppen Sie		
	das Laden		
	und		
	Entladen		AUF
32	der	* LEN	(Hinweis: Nach erfolgreicher Verbindung zum
	Lithium-Batt	3 <i>2 DN</i>	BMS wird automatisch der Status ON
	erie, wenn	3E UII	angezeigt.)
	die		angezeigt.)
	Temperatur		
	zu niedrig		
	ist)	⊅ EL V	
		AGM	
		3 3 30.0°	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		AGM (Standard) /GEL/FLD: 30,0	Schrittweite:
		V	lange drücken für 1V, kurze drücken für 0,1V
		LFP8: 28,5 V	lange disensition in 11, haize disensition in eq. (
	Ladegrenzs	LCNM7: 29,4 V	
33	pannung	⇔ [L V	
	parmang	3 3 60.0°	
		AGM (Standard)/GEL/FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		60,0 V	Schrittweite:
		LFP15: 53,5 V	lange drücken für 1V, kurz drücken für 0,1V
		LFP16: 57,0 V	
		LCNM14: 58,8 V	
	_	\$ U\R	
		35 24.44	
		AGM (Standard) /GEL/FLD: 24,4	Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		V	Schrittweite:
	Unter	LFP8: 26,2 V	lange drücken für 1V, kurz drücken für 0,1V
	Spannungs	LCNM7: 26,7 V	
35	warnung	♣UVR	
	Wiederverbi	35 48.8°	
	ndungsspa	AGM (Standard) /GEL/FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
	nnung		Schrittweite:
		48,8 V	
		LFP15: 49,2 V	lange drücken für 1V, kurz drücken für 0,1V
		LFP16: 52,4 V	
		LCNM14: 53,4 V	

		AGM	₽ ∏./11/1	
		3.6	24.0°	
		AGM (Standard) /GEL/FLD: 24,0		Benutzerdefiniert für das 24V-System: 21,6 ~ 32,0 V
		,	, azz. z.,e V	Schrittweite:
			LFP8: 25.7 V	lange drücken für 1V, kurz drücken für 0,1V
	Unter		LCNM7: 26,2 V	
36	Spannungs	AGM	⇔ ⊓./1/1	
	warnspannu	36	48.0 °	
	ng		dard)/GEL/FLD:	Benutzerdefiniert für das 48V-System: 43,2 ~ 64,0 V
		/ Carrio Carrio	48.0 V	Schrittweite:
			LFP15: 48,2 V	lange drücken für 1V, kurz drücken für 0,1V
			LFP16: 51,4 V	iange arasion at 11, haz arasion at 9,11
		1	_CNM14: 52,4 V	
	Versorgung			
	sspannung			264.0V (Standard)
	über	AGN 37	⇔ LIM×	Benutzerdefiniert: 220 VAC ~ 290 VAC
37	Spannung		264.0°	Schrittweite:
	Trennspann		255	lange drücken für 10V, kurz drücken für 1V
	ung			range discontrat 10 t, Raiz discontrat 1 t
	Niederspan			
	nungs-Trenn			
	spannung		M. INT	176.0V (Standard)
38	des	AGM	\$ UN1I	Benutzerdefiniert: 90VAC~190VAC
	Versorgung	38	176.0°	Schrittweite:
	sunternehm			lange drücken für 10V, kurz drücken für 1V
	ens			
	Begrenzung			
	des			
	Batterieentl			IC-24/3000/100/80: 300A (Standard)
	adestroms			Benutzerdefiniert: 10 ~ 300A
	Weitere	AGM	⇔ EDC	IC-48/5000/80/60: 250A (Standard)
39	Information	39	250.0 ^	Benutzerdefiniert: 10~250A
	en finden			Schrittweite:
	Sie in			Lange drücken für 10A, kurz drücken für 1A
	Abschnitt			
	3.7.			

40	Protokolityp der Lithiumbatte rie	лдм Ч <i>0</i>	⇔ PR0 (1(Standard) Benutzer definieren: 1~10 HINWEIS: Siehe (3) Lithiumbatterie-BMS-Schnittstelle von Kapitel 1
41	BMS aktivieren	rd i	øben O	O(Standard) Normale BMS-Kommunikation: Das BMS steuert die UP-Hi-Ladung und -Entladung. Fehler BMS comm.: Die UP-Hi wechselt automatisch in den No-Battery-Modus und zeigt BME an.
42	Software-Ve rsion	AGM 42	♥ \VER U- 1.0	U-1.0(Standard) Es kann nicht geändert werden. HINWEIS: Detailversion bezieht sich auf die eigentliche Anzeige.

3.6 Batteriespannung Kundenspezifische Logik.

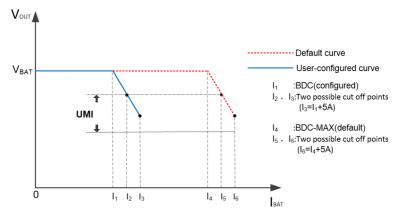
Für die oben genannten Punkte7-16 und 33-36 befolgen Sie bitte die folgenden Regeln strikt.

- Im 24V-Eingangsspannungssystem müssen die folgenden Regeln befolgt werden, wenn die Parameterwerte im Benutzerbatterietyp für eine Blei-Säure-Batterie geändert werden.
- A. Überspannung Trennspannung ≥ Überspannung Wiederanschlussspannung + 0,5 V
- B. Überspannung Trennspannung → Ladegrenzspannung ≥ Ladespannung ≥ Ladespannung erhöhen ≥
 Ladeerhaltungsspannung → Boost Wiederverbindung Ladespannung
- C. Niederspannung Wiederanschlussspannung > Niederspannung Trennspannung + 0.5 V
- Niederspannung Wiederanschlussspannung > Niederspannung Trennspannung
 Entladegrenzspannung (21,2 V)
- E. Unter Spannungswarnung Wiederverbindung Spannung-0,5 V ≥ Unterspannungswarnspannung ≥ Entladegrenzspannung (21,2 V)
- F. Boost Reconnect Ladespannung Niederspannung Trennspannung
- Im 48V-Eingangsspannungssystem müssen die folgenden Regeln befolgt werden, wenn die Parameterwerte im Benutzerbatterietyp für eine Blei-Säure-Batterie geändert werden.
- A. Überspannung Trennspannung > Überspannung Wiedergnschlussspannung + 1V
- B. Überspannung Trennspannung > Ladegrenzspannung ≥ Ladespannung ≥ Ladespannung erhöhen ≥
 Ladeerhaltungsspannung · Boost Wiederverbindung Ladespannung
- C. Niederspannung Wiederanschlussspannung ≥ Niederspannung Trennspannung + 1V
- Niederspannung Wiederanschlussspannung → Niederspannung Trennspannung ≥ Entladegrenzspannung (42,4 V)
- E. Unter Spannungswarnung Wiederverbindung Spannung-1V ≥ Unterspannungswarnung Spannung ≥

- Entladegrenzspannung (42,4 V)
- F. Boost Reconnect Ladespannung > Niederspannung Trennspannung
- Im 24V Eingangsspannungssystem müssen die folgenden Regeln befolgt werden, wenn die Parameterwerte im Benutzerbatterietyp für eine Lithiumbatterie geändert werden.
- A. Überspannung Trennspannung ≥ Überspannung Wiederanschlussspannung + 0,5 V
- B. Überspannung Trennspannung → Überspannung Wiederanschlussspannung = Ladegrenzspannung ≥ Ladespannung ausgleichen = Ladespannung erhöhen ≥ Float Ladespannung → Boost Reconnect Ladespannung
- C. Unterspannung Wiederanschlussspannung ≥ Unterspannung Trennspannung + 0,5 V
- Unterspannung Wiederanschlussspannung → Unterspannung-Trennspannung ≥ Entladegrenzspannung
 (21,2 V)
- E. Unterspannungswarnung Wiederverbindungsspannung -0,5 V ≥ Unterspannungs-Warnspannung ≥ Entladegrenzspannung (21,2 V)
- F. Boost Reconnect Ladespannung Niederspannung Reconnect Spannung
- 4) Im 48V Eingangsspannungssystem müssen die folgenden Regeln befolgt werden, wenn die Parameterwerte im Benutzerbatterietyp für eine Lithiumbatterie geändert werden.
- A. Überspannung Trennspannung ≥ Überspannung Wiederanschlussspannung + 1V
- B. Überspannung Trennspannung·Überspannung Wiederanschlussspannung = Ladegrenzspannung ≥
 Ladespannung ausgleichen = Ladespannung erhöhen ≥ Float Ladespannung·Boost Reconnect
 Ladespannung
- C. Niederspannung Wiederanschlussspannung ≥ Unterspannung Trennspannung + 1V
- D. Niederspannung Wiederanschlussspannung → Unterspannung Trennspannung ≥
 Entladeschlussspannuna (42.4 V)
- E. Unterspannungswarnung Wiederverbindung Spannung-1V ≥ Unterspannungswarnung Spannung≥
 Entladeschlussspannung (42,4 V)
- F. Boost Reconnect Ladespannung, Niederspannung Reconnect Spannung

Die Spannungsparameter der Lithiumbatterie müssen entsprechend den Spannungsparametern von BMS eingestellt werden.

3.7 Begrenzung des Batterieentladestroms


Die Funktion eignet sich für die strombegrenzenden Anforderungen von Lithium-Batterien.

Abkürzung:

V_{BAT}	Batteriespannung	
Vout Ausgangsspannung des Wechselrichters		
I _{BVT} Tatsächlicher Batteriestrom		

UMI Niederspannungs-Trennspannung des Versorgungsunternehmens	
BDC Batterieentladestrom-Grenzwert (Einstellwert)	
BDC - MAX Max. Grenzwert für Batterieentladungsstrom	

V-I-Kurve:

Wenn der $V_{\text{OUT}} \leq \text{UMI}$ oder $I_{\text{BAT}} \geq \text{BDC+5A}$ ist, wird der Wechselrichter ausgeschaltet. Wenn das Versorgungsunternehmen angeschlossen ist, versorgt es die Last mit Strom.

4 Schutzvorkehrungen

Nein	Schutz	Anweisung				
1	PV-Grenzstro m	Wenn der Ladestrom der PV-Anlage ihren Nennstrom überschreitet, wird sie mit dem Nennstrom geladen. HINWEIS: Wenn der Ladestrom den Nennstrom des PV-Generators überschreitet, stellen Sie sicher, dass die PV-Leerlaufspannung die "maximale PV-Leerlaufspannung" nicht überschreitet. Andernfalls kann der Wechselrichter/das Ladegerät beschädigt werden.				
2	PV-Verpolung	Schützen Sie vollständig vor PV-Verpolung, korrigieren Sie die Kabelverbindung, um den regulären Betrieb wieder aufzunehmen.				
3	Nacht Rückstrom	Verhindert, dass sich die Batterie nachts durch das PV-Modul entlädt.				
4	Überspannu ng AC-IN	Wenn im 220V / 230VAC-System die Netzspannung 264 V überschreitet, wird das Laden / Entladen der Netzversorgung gestoppt.				
5	Versorgungs eingang unter Spannung	Wenn im 220V / 230VAC-System die Netzspannung weniger als 176 V beträgt, wird das Laden / Entladen des Versorgungsunternehmens gestoppt.				
6	Utility-Eingan g über Strom	Utility-Eingangsstrom höher als ein angegebener Wert, das Gerät geht automatisch in den Schutzmodus. Drücken Sie die Überstromschutzvorrichtung, um die Arbeit fortzusetzen, wenn der Eingangsstrom des Dienstprogramms auf den erwarteten Wert sinkt.				
7	Verpolung der Batterie	Wenn die PV-Anlage und das Versorgungsunternehmen nicht mit dem Wechselrichter / Ladegerät verbunden sind, beschädigt die umgekehrte Polarität der Batterie den Wechselrichter / das Ladegerät nicht. Es wird wieder normal laufen, nachdem die Fehlverdrahtung korrigiert wurde.				
8	Batterie-Über spannung	Wenn die Batteriespannung den Überspannungstrennungsspannungspunkt erreicht, stoppt der Wechselrichter / das Ladegerät das Aufladen der Batterie, um Batterieschäden aufgrund von Überladung zu vermeiden.				
9	Batterie entladen	Wenn die Batteriespannung den LVD-Punkt erreicht, stoppt der Wechselrichter / das Ladegerät automatisch die Entladung der Batterie, um Batterieschäden durch Überentladung zu vermeiden.				
10	Kurzschluss des Lastausgang s	Wenn ein Kurzschluss an der Lastausgangsklemme auftritt, wird der Ausgang sofort abgeschaltet. Die Ausgabe wird dann nach einer Verzögerung automatisch wiederhergestellt (die erste Zeitverzögerung für 5s, die zweite Zeitverzögerung für 10s, die dritte Zeitverzögerung für 15s). Wenn der Kurzschluss nach dreimaliger Verzögerung bestehen bleibt, beseitigen Sie den Fehler und starten Sie dann den				

		Wechselrichter / das Ladegerät neu, um die Arbeit wieder aufzunehmen.				
		Leistungsfaktor Überlast	1.3	1.5		
		Fortdauer	10sec	5sec		
11 Überlasten		Dreimal wiederherstellen	Die erste Zeitverzögerung für 5s, die zweite Zeitverzögerung für 10s, die dritte			
			Zeitverzögerung für 15s			
	Überhitzung					
	des	Der Wechselrichter/Ladegerät stop	opt das Laden/Entlad	en, wenn die		
12	Wechselricht	Innentemperatur zu hoch ist, und wird wieder aufgenommen.				
	ers/Ladeger	Laden/Entladen, wenn die Temperatur wieder normal ist.				
	äts					

5 Fehlerbehebung

5.1 Referenz zu Fehlern

Fehler Code	Fehler	Batterierahmen blinkt	Indikator	Summer	Fehler Indikator
ELV	Batterie Unterspannung	blinkt		-	-
E0.1	Batterie-Überspannung	blinkt			
E01	Batterie Überentladen	blinkt		-	
CD.A	Zellen Überspannung	blinkt		-	
ELV	Zellen Unterspannung	blinkt		1	-
[LT	Niedrige Zelltemperatur	blinkt		1	
COT	Hohe Zelltemperatur	blinkt		-	
ens	Sonstiger Fehler des BMS	blinkt		1	-
ECP	Batterie Ladewarnung oder Schutzfunktion			-	
HD.A	Hardware-Überspannung			-	
MOV	Bus Überspannung			-	
MLV	Bus Unterspannung			-	-
OTP	Kühlkörper überhitzt			1	-
LTP	niedrige Batterietemperatur			1	1
[FA	Kommunikationsfehlern			-	-
POC	PV Überstrom			1	-
PNA	PV-Spannung abnormal				
PLL	PV-Leistung niedrig			-	
POT	PV überhitzt				
UL 7	Versorger Unterspannung		Versorger blinkt schnell	-	-
ППЛ	Versorger Überspannung		Versorger blinkt schnell	Alarm	dauerhaft an
UF A	Netzfrequenz abnormal		Versorger blinkt schnell	Alarm	dauerhaft an
□\A	Ausgangsspannung abnormal		Wechselrichter blinkt schnell	Alarm	dauerhaft an
05C	Ausgangskurzschluss		Wechselrichter blinkt schnell	Alarm	dauerhaft an
00L	Ausgangsüberlast		Wechselrichter blinkt schnell	Alarm	dauerhaft an
PON	PV-Überspannung		PV blinkt schnell	Alarm	dauerhaft an
IRE	EEPROM Lesefehler			-	
IHE	EEPROM Sendefehler				

5.2 Lösungen

Fehler	Lösungen			
Batterie-Überspannung	Prüfen Sie, ob die Batteriespannung zu hoch ist und trennen Sie die PV-Module.			
Batterie überentladen	Warten, bis die Batteriespannung auf oder über dem LVR-Punkt (Unterspannungs-Wiederverbindungsspannung) fortgesetzt wird, oder Ändern der Stromversorgungsmethode.			
Überhitzung der Batterie	Wenn die Batterietemperatur auf die Überhitzungsrückgewinnungstemperatur oder niedriger sinkt, wird der Wechselrichter / das Ladegerät wieder in Betrieb genommen.			
Überhitzung des Geräts	Wenn die Gerätetemperatur auf die Überhitzungsrückgewinnungstemperatur oder niedriger sinkt, wird der Wechselrichter / das Ladegerät wieder in Betrieb genommen.			
Ausgangsüberlastung	Bitte reduzieren Sie die Anzahl der AC-Lasten. Starten Sie das Gerät neu, um den Lastausgang wiederherzustellen.			
Ausgangskurzschluss	Überprüfen Sie sorgfältig die Lastverbindung, beseitigen Sie den Fehler. Starten Sie das Gerät neu, um den Lastausgang wiederherzustellen.			

6 Instandhaltung

- Die folgenden Inspektionen und Wartungsaufgaben werden mindestens zweimal pro Jahr für die beste Leistung empfohlen.
- Stellen Sie sicher, dass der IC fest in einer sauberen und trockenen Umgebung installiert ist.
- Stellen Sie sicher, dass der Luftstrom um den IC nicht blockiert wird. Beseitigen Sie Schmutz und Fragmente auf dem Heizkörper.
- Überprüfen Sie alle blanken Drähte, um sicherzustellen, dass die Isolierung nicht durch Sonneneinstrahlung, Reibungsverschleiß, Trockenheit, Insekten oder Ratten usw. beschädigt ist. Reparieren oder ersetzen Sie einige Drähte, falls erforderlich.
- Ziehen Sie alle Anschlüsse fest. Prüfen Sie auf lose, gebrochene oder verbrannte Drahtverbindungen.
- Prüfen und bestätigen Sie, dass die LED- oder LCD-Anzeige mit dem tatsächlichen Betrieb übereinstimmt. Achten Sie auf eventuelle Fehlersuch- oder Fehleranzeigen. Ergreifen Sie dann die erforderlichen Abhilfemaßnahmen.
- Vergewissern Sie sich, dass alle Systemkomponenten fest und korrekt miteinander verbunden sind.
- Vergewissern Sie sich, dass alle Klemmen keine Korrosion, keine beschädigte Isolierung, keine hohe Temperatur oder kein verbrannte/verfärbte Zeichen aufweisen. Ziehen Sie dann die Anschlussschrauben auf das vorgeschlagene Drehmoment an.
- Überprüfen Sie auf Schmutz, nistende Insekten und Korrosion. Falls dies der Fall ist, beseitigen Sie es rechtzeitig.
- Überprüfen und bestätigen Sie, dass der Blitzableiter in gutem Zustand ist. Ersetzen Sie ihn rechtzeitig durch einen neuen, um eine Beschädigung des IC und sogar anderer Geräte zu vermeiden.

Gefahr eines elektrischen Schlags! Stellen Sie sicher, dass vor den oben genannten Vorgängen die gesamte Stromversorgung ausgeschaltet ist, und befolgen Sie dann die entsprechenden Inspektionen und Vorgänge.

7 Leistungsbeschreibung

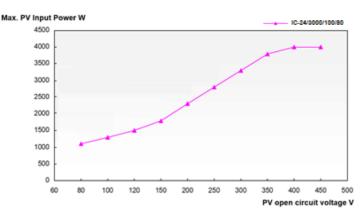
Artikel	IC-24/3000/100/80	IC-48/5000/80/60	
Nennspannung der Batterie	24VDC	48VDC	
Batterie-Eingangsspannung	21,6 ~ 32VDC 43,2 ~ 64VDC		
Max. Akkuladestrom	100A	80A	
Inverter-Ausgang			
Kontinuierliche Ausgangsleistung Spitzenleistung (3S)	3000 W 5000 W 8000 W		
Ausgangsspannungsber eich	220VAC (-6% ~ + 3%); 230VAC (-10% ~ + 3%)		
Ausgangsfrequenz	50/60±0,2%		
Ausgangswelle	Reine Sinuswelle		
Lastleistungsfaktor	0,2-1 (Lastleistung ≤ kontinuierliche Ausgangsleistung)		
Verzerrung THD	THD≤3% (Ohm'sche Belastung)		
80% Nennleistungseffizienz	92% 92%		
Max. Nennleistungseffizienz	91% 91%		
Max. Ausgangseffizienz	93% 93%		
Schaltzeit	10ms (Umschalten von Netzbetrieb zu Inverter-Betrieb), 15ms (Umschalten vom Inverter-Ausgang zur Netzversorgung)		
Laden von Versorgungsunternehmen			
Eingangsspannung des Versorgungsunternehme ns	176VAC ~ 264VAC (Standard		

Eingangsfrequenz des Versorgungsunternehme ns	40 bis 65 Hz		
Max. Netzladestrom	80A	60A	
Solares Laden			
Max. PV-Leerlaufspannung	450V [⊕] , 395V [©]	500 $V^{\mathbb{O}}$ 440 $V^{\mathbb{D}}$	
MPPT-Spannungsbereich	80 ~ 350V	120 ~ 400V	
Mar DV Fire and Links	4000 W	4000 W	
Max. PV-Eingangsleistung	(Hinweis: Für die Kurve von Max. PV-Eingangsleistung vs. PV-Leerlaufspannung siehe Kapitel Anhang 1 für Details.)		
Max. PV-Ladeleistung	2875 W	4000 W	
Max. PV-Ladestrom	100A	80A	
Ladespannung ausgleichen	29.2V (AGM-Standard)	58,4 V (AGM-Standard)	
Ladespannung erhöhen	28,8 V (AGM-Standard)	57,6 V (AGM-Standard)	
Float-Ladespannung	27,6 V (AGM-Standard)	55,2 V (AGM-Standard)	
Niederspannung Trennspannung	21,6 V (AGM-Standard)	43,2 V (AGM-Standard)	
Tracking-Effizienz		≥99,5%	
Temp. kompensieren Koeffizient	-3mV/°C/2V (Standard)		
Allgemein			
Spitzenstrom	60A	95A	
L d f d	<1,8A	<1,2A	
Leerlaufverbrauch	(ohne PV- und Netzanschluss, Lastausgang eingeschaltet)		
0	<1,2A	-0,7A	
Standby-Strom	(ohne PV- und Netzanschluss, Lastausgang ausgeschaltet)		
Mechanische Parameter			

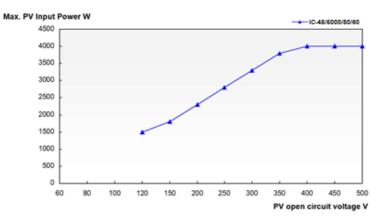
Abmessung (H x B x T)	642,5x381,6x149 mm	642,5x381,6x149 mm
Montagegröße	620 * 300mm	620 * 300mm
Größe der	*10	Ф10 mm
Montagebohrung	Φ10 mm	
Nettogewicht	19 kg	19 kg

①Bei minimaler Betriebsumgebungstemperatur Bei 25②°C Umgebungstemperatur

<u>Umgebungsparameter</u>


Anlage	Schutzart IP30
Relative Luftfeuchtigkeit	< 95% (N.C.)
Umgebungstemperatur	-20°C [~] 50°C
Lagertemperatur	-25°C~60°C
Höhe	<5000 m (Wenn die Höhe überschreitet 1000 Meter, wir die Nennleistung reduziert nach IEC62040.)

Anlage 1 PV-Leerlaufspannung Vs Eingangsleistung


Detaillierte PV-Leerlaufspannung und max. PV-Eingangsleistung wird wie folgt dargestellt:

Modell	Min. PV-Betriebsspann ung	Max. PV-Leerlaufspannung	Max. PV-Eingangsl eistung
IC-24/3000/100/80	80 V	450V (Bei minimaler Temperatur) 395V (25°C)	4000 W
IC-48/5000/80/60	120 V	500V (Bei minimaler Temperatur) 440V (25°C)	4000 W

> IC-24/3000/100/80

> IC-48/5000/80/60

Anhang 2 Haftungsausschluss

Die Garantie gilt nicht für die folgenden Bedingungen:

- Schäden entstehen durch unsachgemäßen Gebrauch oder eine ungeeignete Umgebung.
- Laststrom/Spannung/Leistung überschreitet den Grenzwert des Wechselrichters/Ladegeräts.
- Schäden durch Überschreitung der Betriebstemperaturen im Nennbereich.
- Lichtbögen, Brände, Explosionen und andere Unfälle werden durch die Nichtbeachtung der Aufkleber auf dem Wechselrichter/Ladegerät oder der Anweisungen im Handbuch verursacht.
- Zerlegen und reparieren Sie den Wechselrichter/das Ladegerät ohne Genehmigung.
- Der Schaden wurde durch h\u00f6here Gewalt verursacht.
- Schäden sind während des Transports oder der Handhabung aufgetreten.
- Folgeschäden

Änderungen ohne vorherige Ankündigung! Versionsnummer: V1.0

Offgridtec GmbH Im Gewerbepark 11 84307 Eggenfelden Deutschland

Kontakt:

Tel.: +49 (0) 8721 9199400 E-Mail: info@offgridtec.com

Onlineshop:

www.offgridtec.com